Contoh2. suatu fungsi non linear, seperti fungsi produksi Cobb-Douglas yang umum Q=AKα Lβ Dapat dengan mudah dikonversikan menjadi fungsi linear dangan mencari logaritma masing – masing ruas,sebagai berikut : Log Q = log A + α log K +β log L Dengan cara serupa, fungsi eksponensial dan fungsi pangkat yang lain dapat dengan mudah
Hai Mino, terima kasih sudah bertanya di Roboguru. Kakak bantu jawab ya Jawaban Gambar dari soal di atas terlampir di bawah. Untuk menggambar grafik fungsi eksponen, kita dapat menentukan terlebih dahulu titik-titik koordinat yang dilalui fungsi, dengan cara mensubstitusikan nilai-nilai pada domain, dan menghubungkan titik-titik tersebut. Ingat sifat eksponen berikut 1/a^b = a^-b Diketahui fungsi eksponen fx=3^x + 1 pada interval -3 ≤ x ≤ 3. Maka titik-titik koordinatnya adalah x = -3 → f-3 = 3^-3 + 1 = 3^-2 = 1/3^2 = 1/9 → Titik -3, 1/9 x = -2 → f-2 = 3^-2 + 1 = 3^-1 = 1/3 → Titik -2, 1/3 x = -1 → f-1 = 3^-1 + 1 = 3^0 = 1 → Titik -1, 1 x = 0 → f0 = 3^0 + 1 = 3^1 = 3 → Titik 0, 3 x = 1 → f1 = 3^1 + 1 = 3^2 = 9 → Titik 1, 9 x = 2 → f2 = 3^2 + 1 = 3^3 = 27 → Titik 2, 27 x = 3 → f3 = 3^3 + 1 = 3^4 = 81 → Titik 3, 81 Sehingga fungsi fx = 2^x + 1 dengan domain -3 ≤ x ≤ 3 melalui titik-titik -3, 1/9, -2, 1/3, -1, 1, 0, 3, 1, 9, 2, 27, dan 3, 81. Jadi, grafik fungsi eksponen tersebut dapat kamu lihat pada gambar di bawah ini. Semoga membantu ya. Semangat Belajar!
Membahastentang bentuk eksponensial, fungsi dan grafik fungsi eksponensial, persamaan dan. Study Resources. Main Menu; by School; Sederhanakanlah bentuk eksponensial berikut ini ke dalam bentuk pangkat bilangan positif a. (81 64) 1 2 × Lukislah grafik fungsi logaritma y = log 3 x dengan x > 0,
Blog Koma - Setelah mempelajari materi "menggambar grafik fungsi eksponen", kita lanjutkan dengan membahas materi Menentukan Fungsi Eksponen dari Grafiknya. Pada materi menggambar grafik fungsi eksponen, akan diketahui fungsi eksponennya dan kita diminta untuk menggambar grafiknya. Hal sebaliknya terjadi untuk materi menentukan fungsi eksponen dari grafiknya, kita disajikan grafik fungsi eksponennya dan kita akan menentukan fungsi eksponennya. Menentukan fungsi eksponen dari grafiknya juga merupakan salah satu tipe soal yang dikeluarkan dalam Ujian Nasional. Sebenarnya untuk ujian Nasional, Menentukan Fungsi Eksponen dari Grafiknya tidaklah sulit karena kita tidak perlu menghafal banyak rumus, namun cukup dengan TEKNIK SUBSTITUSI titik-titik yang dilalui oleh grafik fungsi eksponen pada opsionnya pilihan gandanya langsung. Nanti akan kita coba beberapa tipe soal yang ada pilihan gandanya. Modal utama yang kita butuhkan di sini hanya kecakapan dalam berhitung saja. Untuk memudahkan mempelajari materi Menentukan Fungsi Eksponen dari Grafiknya, teman-teman harus menguasai sifat-sifat eksponen dalam keperluan untuk menghitung, bentuk fungsi eksponen, dan terakhir adalah menyelesaikan sistem persamaan. Pada pembahasan di blog koma ini, secara garis besar kita bagi menjadi dua jenis grafik. Untuk lebih jelasnya kita ikuti pembahasannya berikut ini. Menentukan Fungsi Eksponen dari Grafiknya I Secara umum ada dua fungsi eksponen yang akan kita gunakan sebagai permisalan yaitu $ fx = b \times a^x \, $ dan $ \, fx = b \times a^x + c $ . Bentuk $ fx = b \times a^x \, $ kita gunakan jika pada grafik fungsi eksponennya melalui dua titik saja. Dan bentuk $ \, fx = b \times a^x + c \, $ kita gunakan jika grafiknya melalui lebih dari dua titik. Catatan penting, grafik eksponen yang kita bahas dalam artikel ini adalah grafik eksponen yang monoton, baik monoton naik ataupun monoton turun. Contoh soal 1. Tentukan fungsi eksponen dari grafik berikut ini. Penyelesaian *. Grafik pada gambar contoh soal 1 ini melalui dua titik yaitu 0,1 dan 1,3, sehingga permisalan fungsi ekponen yang kita gunakan adalah $ fx = b \times a^x $. Kita substitusikan kedua titik tersebut. $ \begin{align} x,y=0,1 \rightarrow fx & = b \times a^x \\ 1 & = b \times a^0 \\ 1 & = b \times 1 \\ 1 & = b \end{align} $ Sehingga fungsinya menjadi $ fx = b \times a^x \rightarrow fx = a^x $. $ \begin{align} x,y=1,3 \rightarrow fx & = a^x \\ 3 & = a^1 \\ 3 & = a \end{align} $ Sehingga fungsinya $ fx = a^x \rightarrow fx = 3^x $. Jadi, fungsi eksponen dari grafik tersebut adalah $ fx = 3^x $. 2. Tentukan fungsi eksponen dari grafik berikut ini. Penyelesaian *. Grafik pada gambar contoh soal 2 ini melalui dua titik yaitu 1,6 dan 2,12, sehingga permisalan fungsi ekponen yang kita gunakan adalah $ fx = b \times a^x $. Kita substitusikan kedua titik tersebut. $ \begin{align} x,y=1,6 \rightarrow fx & = b \times a^x \\ 6 & = b \times a^1 \\ 6 & = b a \\ a & = \frac{6}{b} \, \, \, \, \, \, \text{...persi} \end{align} $ $ \begin{align} x,y=2,12 \rightarrow fx & = b \times a^x \\ 12 & = b \times a^2 \\ 12 & = b a^2 \, \, \, \, \, \, \text{...persii} \end{align} $ Substitusi $ a = \frac{6}{a} \, $ ke persii $ \begin{align} 12 & = b a^2 \\ 12 & = b \left \frac{6}{b} \right^2 \\ 12 & = b \left \frac{36}{b^2} \right \\ 12 & = \frac{36}{b} \\ b & = \frac{36}{12} = 3 \end{align} $ Sehingga nilai $ a = \frac{6}{b} = \frac{6}{3} = 2 $. Artinya fungsinya $ fx = b \times a^x = 3 \times 2^x $ . Jadi, fungsi eksponen dari grafik tersebut adalah $ fx = 3 \times 2^x $. 3. Tentukan fungsi eksponen dari grafik berikut ini. Penyelesaian *. Grafik pada gambar contoh soal 3 ini melalui dua titik yaitu 0,4 dan 1,2, sehingga permisalan fungsi ekponen yang kita gunakan adalah $ fx = b \times a^x $. Kita substitusikan kedua titik tersebut. $ \begin{align} x,y=0,4 \rightarrow fx & = b \times a^x \\ 4 & = b \times a^0 \\ 4 & = b \times 1 \\ 4 & = b \end{align} $ Sehingga fungsinya menjadi $ fx = b \times a^x \rightarrow fx = 4 \times a^x $. $ \begin{align} x,y=1,2 \rightarrow fx & = 4 \times a^x \\ 2 & = 4 \times a^1 \\ 2 & = 4a \\ a & = \frac{2}{4} = \frac{1}{2} \end{align} $ Sehingga fungsinya $ fx = 4 \times a^x \rightarrow fx = 4 \times \left \frac{1}{2} \right^x $. *. Kita sederhanakan bentuk fungsi yang kita peroleh $ \begin{align} fx & = 4 \times \left \frac{1}{2} \right^x \\ fx & = 2^2 \times \left 2^{-1}\right^x \\ fx & = 2^2 \times 2^{-x} \\ fx & = 2^{2 - x} \end{align} $ Jadi, fungsi eksponen dari grafik tersebut adalah $ fx = 2^{2 - x} $. 4. Tentukan fungsi eksponen dari grafik berikut ini. Penyelesaian *. Grafik pada gambar contoh soal 4 ini melalui dua titik yaitu 0,4, 1,7, dan 2,13 sehingga permisalan fungsi ekponen yang kita gunakan adalah $ fx = b \times a^x + c $. Kita substitusikan kedua titik tersebut. $ \begin{align} x,y=0,4 \rightarrow fx & = b \times a^x + c \\ 4 & = b \times a^0 + c \\ 4 & = b \times 1 + c \\ 4 & = b + c \, \, \, \, \, \, \text{...persi} \\ x,y=1,7 \rightarrow fx & = b \times a^x + c \\ 7 & = b \times a^1 + c \\ 7 & = b \times a + c \\ 7 & = ba + c \, \, \, \, \, \, \text{...persii} \\ x,y=2,13 \rightarrow fx & = b \times a^x + c \\ 13 & = b \times a^2 + c \\ 13 & = ba^2 + c \, \, \, \, \, \, \text{...persiii} \\ \end{align} $ *. Eliminasi persi dan persii $ \begin{array}{cc} ba + c = 7 & \\ b + c = 4 & - \\ \hline ba - b = 3 & \end{array} $ Kita peroleh $ ba - b = 3 \, $ ....persiv. *. Eliminasi persii dan persiii $ \begin{array}{cc} ba^2 + c = 13 & \\ ba + c = 7 & - \\ \hline ba^2 - ba = 6 & \\ aba - b = 6 & \end{array} $ Kita peroleh $ aba - b = 6 \, $ ....persv. *. Dari persiv dan v, $ aba - b = 6 \rightarrow a \times 3 = 6 \rightarrow a = 2 $. Persiv $ ba - b = 3 \rightarrow 2b - b = 3 \rightarrow b = 3 $. Persi $ b + c = 4 \rightarrow 3 + c = 4 \rightarrow c = 1 $. Sehingga fungsinya $ fx = b \times a^x + c = 3 \times 2^x + 1 $. Jadi, fungsi eksponen dari grafik tersebut adalah $ fx = 3 \times 2^x + 1 $. Menentukan Fungsi Eksponen dari Grafiknya II Bagaimana dengan cara menentukan fungsi eksponen yang soal-soalnya dalam bentuk pilihan ganda seperti soal-soal UN? Cara terbaik yang bisa selain menentukan fungsi eksponen dengan cara di atas yaitu dengan langsung mengecek setiap pilihan gandanya dengan cara mensubstitusikan titik yang dilalui oleh grafik eksponennya. Fungsi yang benar adalah fungsi yang melalui semua titik tersebut. Contoh Soal 5. Perhatikan grafik fungsi berikut ini. Dari grafik tersebut, fungsi yang mewakili grafik tersebut adalah .... A. $ fx = 3^x + 1 $ B. $ fx = 2^{x - 1} + 3 $ C. $ fx = \left \frac{1}{2} \right^x + \frac{7}{2} $ D. $ fx = {}^2 \log x + 4 $ E. $ fx = {}^3 \log x+ 2 + 3 $. Penyelesaian *. Kita substitusi titik yang dilewati oleh grafik ke fungsi-fungsi yang ada pada pilihan gandanya. Trik untuk memilih titik adalah, pilihlah titik yang selain titik pertama karena biasanya akan banyak fungsi di pilihan ganda yang memenuhi. Sehingga kita pilih titik kedua yaitu 2,5. Titik 2,5 artinya ketika kita substitusi $ x = 2 \, $ maka nilai fungsinya harus 5 atau $ f2 = 5 $. Pilihan A $ f2 = 3^2 + 1 = 9 + 1 = 10 \, $ SALAH. Pilihan B $ f2 = 2^{2 - 1} + 3 = 2 + 3 = 5 \, $ BENAR. Pilihan C $ f2 = \left \frac{1}{2} \right^2 + \frac{7}{2} = \frac{1}{4} + \frac{7}{2} = \frac{19}{4} \, $ SALAH. Pilihan D $ f2 = {}^2 \log 2 + 4 = 1 + 4 = 5 \, $ BENAR. Pilihan E $ f2 = {}^3 \log 2+ 2 + 3 = {}^3 \log 4 + 3 = 1, + 4 = 5,.. \, $ SALAH. *. Karena yang BENAR masih ada lebih dari satu fungsi, maka kita akan cek untuk titik lain yaitu titik 3,7 untuk pilihan B dan D. Titik 3,7 artinya ketika kita substitusi $ x = 3 \, $ maka nilai fungsinya harus 7 atau $ f3 = 7 $. Pilihan B $ f3 = 2^{3 - 1} + 3 = 4 + 3 = 7 \, $ BENAR. Pilihan D $ f2 = {}^2 \log 3 + 4 = 1, + 4 = 5,.. \, $ SALAH. Sehingga yang benar tersisa pilihan B, ini artinya fungsi grafik tersebut adalah $ fx = 2^{x - 1} + 3 $. Jadi, fungsi grafiknya adalah $ fx = 2^{x - 1} + 3 $. Demikian pembahasan materi Menentukan Fungsi Eksponen dari Grafiknya beserta contoh-contohnya. Selanjutnya silahkan baca juga materi lain yang berkaitan dengan eksponen lainnya dengan mengikuti artikel terkait berikut ini.
Langkahlangkah melukis grafik fungsi eksponen 1. Menentukan titik potong grafik dengan sumbu Y (Syarat : x = 0) Untuk lebih jelasnya, ikutilah contoh soal berikut ini: 01. Lukislah
Pada bab ini yang akan dibahas adalah fungsi eksponen sederhana, yakni fungsi eksponen dengan bentuk y = dimana a > 0 , a ≠ 1, k > 0 dan a, k ϵ Real Langkah-langkah melukis grafik fungsi eksponen 1. Menentukan titik potong grafik dengan sumbu Y Syarat x = 0 2. Menentukan titik-titik bantu dengan menggunakan daftar 3. Melukis grafik Untuk lebih jelasnya, ikutilah contoh soal berikut ini 01. Lukislah grafik fungsi fx = 2x untuk x bilangan real Jawab 02. Lukislah grafik fungsi fx = ⅓x untuk x bilangan real Jawab Titik potong dengan sumbu-Y x = 0 Sehingga y = ⅓0 y = 1 Jadi titiknya 0, 1 03. Sebuah fungsi eksponen y = k. ax diketahui grafiknya melalui titik 0, 5 dan 2, 20. Tentukanlah fungsi eksponen tersebut Jawab Melalui 0, 5 maka 5 = 5 = k1 maka k = 5 Sehingga y = 5. ax Melalui 2, 20 maka 20 = 5. a2 4 = a2 maka a = 2 Sehingga y =
Silahkanbaca cara menginverskan fungsi eksponen dan fungsi logaritma. Jika f ( x) = 2 − sin 2 x, maka fungsi f memenuhi. Lukislah grafik fungsi y = 2 cos 2 x, x ∈ [0 o, 360 o] pembahasan: 2 himpunan penyelesaian persamaan trigonometri. x ∈ [0 o, 360 o] adalah sebagai berikut. Persamaan grafik fungsi pada gambar adalah. Jadi
Grafik Fungsi EksponenMenggambar sketsa grafik fungsi eksponen dapat dilakukan dengan langkah-langkah berikutMenentukan titik-titik bantu dengan membuat daftar atau tabel yang menunjukkan hubungan antara nilai-nilai x dengan nilai-nilai $y=fx=k.{{a}^{x}}$ .Titik-titik dengan koordinat x, y yang diperoleh digambarkan pada bidang kartesius, kemudian dihubungkan dengan kurva mulus, sehingga diperoleh grafik fungsi eksponen $y=fx=k.{{a}^{x}}$Untuk lebih jelasnya, perhatikan contoh 1Lukislah grafik fungsi $fx={{2}^{x}}$ untuk x bilangan realpenyelesaianMenentukan titik koordinat dengan membuat tabel$x$$y=fx={{2}^{x}}$x,y-3$\frac{1}{8}$$\left -3,\frac{1}{8} \right$-2$\frac{1}{4}$$\left -2,\frac{1}{4} \right$-1$\frac{1}{2}$$\left -1,\frac{1}{2} \right$010,1121,2242,4383,8Tabel 2. Nilai fungsi $fx={{2}^{x}}$Menggambar pada bidang kartesius Gambar 1. Grafik fungsi $fx={{2}^{x}}$Contoh 2Lukislah grafik fungsi $gx={{\left \frac{1}{2} \right}^{x}}$ untuk x bilangan realPenyelesaian$x$$y=gx={{\left \frac{1}{2} \right}^{x}}$x,y-38-3,8-24-2,4-12-1,2010,11$\frac{1}{2}$1,1/22$\frac{1}{4}$2,1/43$\frac{1}{8}$3,1/8Tabel 3. Nilai fungsi $gx={{\left \frac{1}{2} \right}^{x}}$Menggambar pada bidang kartesius Gambar 2. Grafik fungsi $gx={{\left \frac{1}{2} \right}^{x}}$Perhatikan kedua contoh jika digabungkan. Gambar 3. Grafik fungsi $fx={{2}^{x}}$dan$gx={{\left \frac{1}{2} \right}^{x}}$Dengan memperhatikan gambar di atas terlihat bahwaDomain kedua fungsi adalah himpunan semua bilangan real, ${{D}_{f}}\text{=}{xx\in R}$ atau -∞, ∞.Rangenya berupa himpunan semua bilangan real positif, ${{R}_{f}}\text{=}{yy>0,y\in R}$ atau 0, ∞.Kedua grafik melalui titik 0, 1.Kurva mempunyai asimtot datar yaitu garis yang didekati fungsi tapi tidak akan berpotongan dengan fungsi, sumbu X garis y = 0.Kedua grafik simetris terhadap sumbu YGrafik $fx={{2}^{x}}$ merupakan grafik yang monoton naik, sedangkan grafik $gx={{\left \frac{1}{2} \right}^{x}}$ merupakan grafik yang monoton turun, dan keduanya berada di atas sumbu X nilai fungsi senantiasa positif.Dari grafik di atas, dapat disimpulkan bahwa fungsi $fx\to {{a}^{x}}$, untuk $a>1$ adalah fungsi naik dan untuk $01$ dan $0
Gambardaerah yang dibatasi dua kurva untuk fungsi seperti yang diberikan pada soal dapat dilihat melalui gambar berikut. Pemfaktoran dari persamaan kuadrat di atas: (x + 2) (x – 1) = 0, diperoleh nilai x = –2 dan x = 1. Hasil pemfaktoran menjadi batas oengintegralan untuk menghitung luas daerah yang dibatasi kurva.
Origin is unreachable Error code 523 2023-06-15 205834 UTC What happened? The origin web server is not reachable. What can I do? If you're a visitor of this website Please try again in a few minutes. If you're the owner of this website Check your DNS Settings. A 523 error means that Cloudflare could not reach your host web server. The most common cause is that your DNS settings are incorrect. Please contact your hosting provider to confirm your origin IP and then make sure the correct IP is listed for your A record in your Cloudflare DNS Settings page. Additional troubleshooting information here. Cloudflare Ray ID 7d7dbae96a35d0d9 • Your IP • Performance & security by Cloudflare
LatihanSoal Anak Perhatikan gambar berikut! Kain pada gambar bercorak persegi-persegi kecil. Seluruh persegi kecil mempunyai ukuran yang sama. Lukislah grafik fungsi eksponen dibawah ini dengan benar! a. f(x)=4^(x) Siswa SMP N 1 Tengaran mengadakan bakti sosial, setiap siswa diminta mengumpulkan beras. Jika beras yang terkumpul 46 karung
Untuk menggambar grafik fungsi eksponen,kita hanya perlu membuat tabel dan mengambil nilai – nilai x tertentu dan menghitung nilai dari fungsi. Selanjutnya kita gambar koordinat titik – titik x, y yang kita peroleh dan menghubungkan titik – titik ini untuk memperoleh grafik fungsi eksponen. Lebih jelasnya kita perhatikan contoh – contoh di bawah ini ! . Contoh 1 Buatlah Sketsa grafik dari $latex y= fx=2^{x}$ Jawab Pertama, kita ambil titik – titik x sebagai domain dari fungsi. Disini kita ambil nilai x dari – 3 sampai 3. Untuk x = -3 Maka nilai y = f 3 = $latex 2^{-3}=\frac{1}{8}$. Dan titiknya adalah -3 ,$latex \frac{1}{8}$. Untuk x = -2 , Maka nilai y = f -2 = $latex 2^{-2}=\frac{1}{4}$. Dan titiknya adalah -2 , $latex \frac{1}{4}$. Untuk x = -1 , Maka nilai y = f -1 = ½ . Dan titiknya adalah -1, ½ . Untuk x = 0 , Maka nilai y = f 0 = 1. Dan titiknya adalah 0,1 . Untuk x = 1, Maka nilai y = f 1 = 2. Dan titiknya adalah 1, 2. Untuk x = 2, Maka nilai y = f 2 = 4. Dan titiknya adalah 2, 4. Untuk x = 3 , Maka nilai y = f 3 = 8. Dan titiknya adalah 3, 8. Hubungkan semua pasangan titik ini, sehingga kita bisa dapatkan grafiknya sebagai berikut !. Contoh 2 Buatlah Sketsa Grafik Jawab Dengan Cara yang sama dengan di atas yaitu dengan mensubstitusi nilai x dari -3 sampai dengan 3 ke dalam fungsi fx kita dapatkan tabel berikut !. Dan grafiknya adalah sebagai berikut !. Contoh 3 Buatlah grafik fungsi eksponensial Jawab Titik potong terhadap sumbu x , terjadi jika y atau fx bernilai 0, sehingga Tidak ada nilai x yang memenuhi untuk fx = 0. Artinya titik potong terhadap sumbu x berada pada saat nilai x di negative tak berhingga. Titik potong terhadap sumbu y, berarti x = 0 berarti titik potong terhadap sumbu y terjadi di titik 0, Titik bantunya bisa dilihat di tabel berikut Grafiknya adalah sebagai berikut ! dari ketiga contoh di atas bisa disimpulkan bahwa grafik fungsi eksponen memiliki asimtot datar yaitu sumbu x, untuk nilai a atau bilangan pokok fungsi bernilai lebih dari nol maka kecenderungan grafiknya bergerak dari kiri ke kanan atas. dan untuk nilai a bilangan pokok fungsi, kecenderungan grafiknya bergerak dari kanan bawah ke kiri atas. Demikianlah pembahasan singkat saya tentang bagaimana melukis grafik fungsi eksponen. Mudah-mudahan bisa membantu. Jika teman – teman ada saran, silahkan tulis di kolom komentar. Salam
Gimana sih, caranya menggambar grafik fungsi eksponen? Yuk, kita pelajari sembari menggambar bersama-sama! Saat musim pancaroba kayak gini, gue suka berkhayal main ke pantai menikmati hangatnya mentari senja. Yang paling bikin gue ngiler itu, nikmatin suasana pantai sambil minum es jeruk, terus leyeh-leyeh gitu. Hmm … segar banget ya, rasanya. Menikmati jus jeruk di tepian pantai. dok. Flickr/Jennifer Boyer Tapi, pas gue lagi berkhayal santai di pantai sambil minum es jeruk. Gue malah kepikiran soal materi eksponen di Matematika, gara-gara melihat jus jeruk, nih! Soalnya, gue melihat kalau bentuk jus jeruk yang ada irisan jeruk di tepi gelas itu mirip bilangan eksponen, yaitu 32, 53, atau kita sebut bx. Jadi, huruf b itu seperti gelas atau basisnya, sedangkan huruf x seperti pangkatnya. Haha, iya nggak sih? Nah, bilangan pangkat atau eksponen itu bisa dibuat dalam bentuk fungsi. Kita sebut dengan fungsi eksponen yang bentuknya seperti di bawah ini. fx = y = a konstanta b basis Dengan syarat, b>0 b lebih dari 0 dan b≠1 b tidak sama dengan 1. Syarat itu harus terus elo pegang, karena nantinya akan berguna ketika elo membuat grafik fungsi eksponen. Baca Juga Rumus Pangkat dan Bilangan Kuadrat Apa Itu Grafik Fungsi Eksponen?Cara Menggambar Grafik Fungsi EksponenCara Menentukan Fungsi Eksponen dari GrafikContoh Soal Grafik Fungsi Eksponen dan Pembahasannya Coba deh elo perhatikan dulu pengertian grafik fungsi eksponen berikut ini. Grafik fungsi eksponen merupakan grafik dengan bentuk monoton naik dan turun. Hmm … Bentuknya monoton naik atau monoton turun. Maksudnya gimana? Elo bayangkan tentang skateboard ramp atau lereng yang biasa buat main skateboard. Skateboard ramp merupakan contoh penerapan grafik fungsi eksponen. Arsip Zenius Udah kebayang kan bentuknya gimana? Nah, ciri-ciri grafik fungsi eksponen kurang lebih seperti skateboard ramp. Ada yang monoton naik, dan ada yang monoton turun. Penentuan naik dan turun tersebut berdasarkan sifat-sifat grafik fungsi eksponen, yaitu Jika b>0, maka grafik akan monoton 0 cLKpxU.wtnj4bd2iw.pages.dev/408 wtnj4bd2iw.pages.dev/556 wtnj4bd2iw.pages.dev/716 wtnj4bd2iw.pages.dev/166 wtnj4bd2iw.pages.dev/138 wtnj4bd2iw.pages.dev/959 wtnj4bd2iw.pages.dev/536 wtnj4bd2iw.pages.dev/766 wtnj4bd2iw.pages.dev/32 wtnj4bd2iw.pages.dev/690 wtnj4bd2iw.pages.dev/135 wtnj4bd2iw.pages.dev/223 wtnj4bd2iw.pages.dev/854 wtnj4bd2iw.pages.dev/220 wtnj4bd2iw.pages.dev/291 lukislah grafik fungsi eksponen berikut
![]()